初一数学有理数内容归纳及例题
一. 有理数
1.1 正数和负数
正数和负数的定义:大于零的数叫正数,正数前面加上负号叫负数.
正负数的实际应用背景:在同一个问题中,分别用正数和负数表示的量具有相反的意义.
阅读与思考 用正负数表示加工允许误差
用正负数表示某个范围的实例
1.2 有理数
有理数的定义(两个整数的比值!!!),有理数的分类.
数轴和数轴的三要素:规定了原点、正方向和单位长度的直线叫数轴.
用数轴表示数的方法:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.
关于原点对称:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两点关于原点对称.
相反数:只有符号不同的两个数叫做互为相反数.一般地,a和-a互为相反数.特别地,0的相反数仍是0.
绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值.
求绝对值的方法:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.这就说,当a是正数时,|a|=a;当a是负数时,|a|=-a;当a=0时,|a|=0.
比较有理数大小的方法:1)正数大于0,0大于负数,正数大于负数;2)两个负数,绝对值大的反而小.(总之,在数轴上右边的数大于左边的数!)
1.3 有理数的加减法
有理数加法法则:1)同号两数相加,取与加数相同的符号,并把绝对值相加.2)绝对值不相等的异号两数相对,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为两反数的两个数相加得0.3)一个数同0相加,仍得这个数.
加法操作顺序:先定符号,再算绝对值.
加法的运算律:加法交换律,加法结合律.
有理数减法法则:减去一个数,等于加上这个数的相反数.
加减混合运算:引入相反数后,加减混全运算可以统一为加法运算:a+b-c=a+b+(-c).
实验与探究 填幻方
阅读与思考 中国人最先使用负数
1.4 有理数的乘除法
有理数乘法法则:1)两数相乘,同号得正,异号得负,并把绝对值相乘.2)任何数同0相乘得0.
倒数:乘积是1的两个数互为倒数.(小学学过)
连乘时的符号确定:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.
有理数乘法运算律:乘法交换律,乘法结合律,乘法对加法的分配律.
除法法则:1)除以一个不等于0的数,等于乘这个数的倒数.或者说成:1)两数相除,同号得正,异号得负,并把绝对值相除.2)0除以任何一个不等于0的数,都得0.
加减乘除混合运算法则:先括号,再乘除,最后加减.
观察与猜想 翻牌游戏中的数学道理 (感觉这个游戏有点扯!)
1.5 有理数的乘方
乘方的相关概念:一般地,n个相同因数a相乘,即乘方的符号规则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何次幂都是0.
含有乘方的混合运算顺序:1)先乘方,再乘除,最后加减.2)同级运算,从左到右进行.3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行.
科学记数法:把一个大于10的数表示成近似数:与准确数接近的数.取得近似数的方法有很多种,常见的是四舍五入.
精确度:精确度表示近似数与准确数的接近程度.
有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字.
数学活动 有关正负数的实际应用,用计算器进行有理数运算,科学记数法的应用
例题
例1 如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?
(1)+4千米; (2) 千米; (3)0千米
解:(1)+4千米表示向东走4千米.
(2) 千米表示向西走 千米.
(3)0千米表示原地未动.
说明:(1)用正数和负数可以表示意义相反的量.(2)正数前面可以加上“+”号,一般地,正数前面的“+”号可省略不写,但有时为了强调,习惯上在正数前面要加上“+”号.(3)0除了表示一个也没有外,还是正数与负数的分界;这里在实际问题中有确定的意义.
例 2用有理数表示下面各量.
(1)如果收入200元记作+200元,则如何表示支出100元?
(2)如果海平面以下100米记作-100米,则如何表示海平面以上1000米?
(3)如果向南行100米记作+100米,则向北行200米如何表示?
(4)如果比标准重量重10千克记作+10千克,则比标准重量少5克应如何表示?
分析 该题中每两个量都是意义相反的两个量,为了区别意义相反的量我们应用不同符号的数来表示.
解 (1)支出100元表示为-100元;(2)海平面以上1000米应表示为+1000米;(3)向北行200米表示为-200米;(4)比标准重量少5克表示为-5克.
注意 (1)一个量是用正数表示,还是用负数表示是人们规定的,但在表示中也应尊重人们在多年生活中形成的习惯.如:零上温度一般规定为正;海平面以上一般规定为正等;(2)正数前面的“+”号是可以省略不写的.
例3 判断正误(正确的打√,错误的打×).
(1)-a一定是负数.( )
(2)零是自然数.( )
(3)没有最小的正有理数.( )
解:(1)×(2)√(3)√
说明:应紧扣互为相反数、负数、零、正有理数的概念来解此类题,主要是应想到我们已经学到了代数领域了.应时时注意到字母a可能为:负数、零、正数.
例4 (1)在知识竞赛中,如果+10表示加10,那么扣20分怎样表示?(2)某人转动转盘,如果用+5表示沿用逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0. 02克记作+0.02,那么-0.03克表示什么?
解:(1)扣20分记作-20分;(2)顺时针方向转了12圈记作-12圈;(3)-0.03克表示乒乓球的质量低于标准质量0. 03克.
说明:通过三个实例说明如何用正负数表示这种具有相反意义的量.
例5 把下列各数填在相应的括号内:-16,26,-12,-0.92, ,0, ,0.1008,-4.95 (思考:小数是分数吗!).
正数集合{ }; 负数集合{ };
整数集合{ }; 正分数集合{ };
负分数集合{ };
分析:根据正数、负数、整数和分数的定义,严格区别.注意零既不是正数,也不是负数,但是整数.
解:正数集合{26, , ,0.1008,……};
负数集合{-16,-12,-0.92,-4.95,……};
正分数集合{ , ,0.1008,……};
负分数集合{-0.92,-4.95,……}.
说明:用大括号表示集合时,要注意省略号的使用.如“正数集合”指的是包含所有正数的一个“集体”,因为是“所有的”,而具体填时仅能填写一部分,所以后面应加省略号.
习题精选
一、选择题
1.下面说法中正确的是( ).
A.一个数前面加上“-”号,这个数就是负数
B.0既不是正数,也不是负数
C.有理数是由负数和0组成 D.正数和负数统称为有理数
2.如果海平面以上200米记作+200米,则海平面以上50米应记作( ).
A.-50米 B.+50米
C.可能是+50米,也可能是-50米 D.以上都不对
3.下面的说法错误的是( ).
A.0是最小的整数 B.1是最小的正整数
C.0是最小的自然数D.自然数就是非负整数
二、填空题
1.如果后退10米记作-10米,则前进10米应记作________;
2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;
3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.
三、判断题
1.0是有理数.( )
2.有理数可以分为正有理数和负有理数两类.( )
3.一个有理数前面加上“+”就是正数.( )
4.0是最小的有理数.( )
四、解答题
1.写出5个数(不许重复),同时满足下面三个条件.
(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.
2.如果我们把海平面以上记为正,用有理数表示下面问题.
一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.
3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?
4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?
5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?
6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?